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Non-uniformity in beams arises either from manufacturing imperfections or by design,
and can have a singular impact on the qualitative properties of the vibratory response of the
beam. To describe the mechanism causing such large changes on the dynamics of the beam,
we derived asymptotically a simpler equation, in the form

s
ss
#Q(s)s(s)"0.

The coe$cient function Q(s) is given by equation (52) herein in terms of the beam #exural
rigidity, the mass per unit length and the tensile force applied to the beam. The equation is
asymptotic to the non-uniformity of the beam, but under certain restrictions, namely of
having constant tension and a constant product of the beam mass per unit length and
#exural rigidity, it is an exact governing equation for wave propagation along
Bernoulli}Euler beams and it has a Helmholtz-like form. The behavior of the equation is
systematically explored and illustrated through numerical results.
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1. INTRODUCTION

The vibration of non-uniform beams, whether smooth or stepped, has been studied
extensively, and is still receiving attention in the literature. The non-uniformity may arise in
the material properties and in the geometry of the beam. Usually, the e!ect of the
non-uniformity on the natural frequencies and natural modes of "nite beams is investigated,
under various boundary conditions. Wave propagation along long non-uniform beams has
received less attention, especially in the case of non-periodic, smooth and continuous
non-uniformity.

For periodic non-uniformity, analytical techniques can be applied, such as the Floquet
theory and perturbation methods, such as the method of multiple scales. Wave interaction
with periodic non-uniformity can give rise to strong resonance e!ects. For incident waves
with wavelength of the order of two times the wavelength scale of the non-uniformity, the
incident wave resonates with the non-uniformity, leading to almost complete re#ection if
the non-uniform part of the beam is long enough. This strong interaction is known as Bragg
re#ection (see reference [1] ).

The case of non-periodic non-uniformity is even more interesting. For beams with a long
enough non-uniform part, vibration with a fairly broad spectrum may stay localized in
a "nite region close to its source. The normal modes are not extended anymore, and they
0022-460X/01/440577#37 $35.00/0 ( 2001 Academic Press
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become localized in space. In terms of wave propagation, we may have almost complete
re#ection and exponentially small transmission. These are manifestations of localization
phenomena in the vibration of mechanical systems. Another feature of the behavior of such
localized systems is the disproportionally large sensitivity of the system response with
respect to small variation in the non-uniformity of the system parameters, as pointed out by
Pierre [2] and Triantafyllou and Tryantafyllou [3].

In summary, small non-uniformity in the material and geometrical properties in
beams can have a singular importance, causing large e!ects on vibration propagation
relative to its own magnitude. To help describe these mechanisms well, and given the
signi"cance these e!ects may have for a large number of applications, we derived
asymptotically a simpler equation, which captures the essence of the localization
phenomena.

We derived asymptotically a second order di!erential equation governing wave
propagation along non-uniform Bernoulli}Euler beams under the action of non-uniform
tensile force along their length. This second order governing equation is asymptotic with
respect to the steepness of the non-uniformity. In other words, as the non-uniformity
steepness decreases, the agreement between the behavior predicted by the second order
governing equation and the full governing equation increases.

When the tensile force and the product of the beam #exural rigidity by its mass per unit
length are constants, the second order governing equation is an exact governing equation
for wave propagation along non-uniform Bernoulli}Euler beams. These restrictions are not
commonly met in practice, but such beams can be designed and built.

The second order governing equation under the restrictions mentioned above can be used
to design the beam non-uniformity to achieve, for example, passive vibration isolation. This
can be done in two ways. The "rst approach consists of using a second order di!erential
equation with non-constant coe$cient which has a closed-form solution and models the
wave propagation problem well. The analytical solution furnishes a functional relation
between the wave frequency and the scattering coe$cients, such as the re#ection coe$cient,
using the non-uniformity in the coe$cient function as a parameter. Then, if we specify the
form of the functional relation between the re#ection coe$cient and the wave frequency, we
end up designing the non-uniformity in the coe$cient function of the second order
di!erential equation. Once the non-uniformity in the coe$cient function is speci"ed, the
non-uniformity in the beam #exural rigidity and mass per unit length is also determined. We
give an example of this approach in section 6.

The second approach consists of using inverse-scattering techniques for Helmholtz-like
equations, since the second order governing equation under the restrictions mentioned
above has a Helmholtz-like form.

In the next section, we give an outline of the previous work on wave propagation along
smooth non-uniform beams, on analytical solutions of second order di!erential equations
and on inverse-scattering techniques for the Helmholtz equation. In section 3, we give the
governing equation for the Bernoulli}Euler beam in terms of the chosen non-dimensional
variables. In section 4, we derive asymptotically the second order di!erential equation
governing wave propagation along non-uniform Bernoulli}Euler beams. We also discuss
the qualitative behavior predicted by this governing equation for general non-uniformities,
and we describe the restriction over the non-uniformity under which this
equation is an exact governing equation. In section 5, we use the second order governing
equation to predict wave re#ection by the beam non-uniformity. We compare results
for the modulus of the re#ection coe$cient from the numerical simulation of both
governing equations. In section 6, we illustrate the "rst approach for the design problem
mentioned above.
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2. PREVIOUS WORK

Wave propagation along smooth non-uniform periodic Bernoulli}Euler beams can be
studied through analytical techniques and perturbation methods. Lee and Ke [4] applied
the Floquet theory to study #exural wave propagation along Bernoulli}Euler beams with
periodic non-uniformity. They show that #exural waves in a periodic beam can be
interpreted as a superposition of two pairs of waves propagating in opposite directions, of
which one pair behaves as an attenuated wave. Hawwa [1] considered beams with
a periodically varying cross-section, and used a straightforward asymptotic expansion to
show that resonance between the beam periodicity and the wave"eld occur when the
wavenumber of the #exural wave is half the wavenumber of that of the beam periodicity.
A uniform expansion near the resonance condition was obtained through the method of
multiple scales. An account of the literature regarding wave propagation along periodic
beams is given in the two references mentioned above.

To study the vibration of non-periodic non-uniform Bernoulli}Euler beams, numerical
methods, like the "nite element method, the "nite di!erence method and the transfer matrix
method are usually applied. The exceptions are geometrical and material non-uniformities
which are polynomial functions of the space parametrization. Naguleswaran [5] considered
Bernoulli}Euler beams with a variation in breadth proportional to xs (s)0, and x is
the distance from the &&sharp'' end). Abrate [6] considered beams with cross-sectional
area and its second moment as arbitrary polynomial functions of the space parametrization.
Approximations for the natural frequencies were obtained using the Rayleigh}Ritz
method.

Heading [7] gives a list of indices of refraction such that the resulting one-dimensional
Helmholtz equation has closed-form solutions in terms of transcendental functions. He also
discusses how to generate more complex indices of refraction from simple ones. He also
gives an account of the literature on one-dimensional Helmholtz- and SchroK dinger-like
equations with non-constant coe$cient functions, which have a closed-form solution.

An account of the literature about inverse-scattering methods for the one-dimensional
Helmholtz-like equations up to 1987, with emphasis on the context of seismology, is given
in reference [8]. An exact inverse method for the one-dimensional Helmholtz equation in
the half line is described in Sylvester et al. [9] and Sylvester and Winebrenner [10]. They
developed a new layer-stripping technique for the inverse-scattering problem of the
Helmholtz equation on the half line. In Sylvester et al. [9], they proved convergence of the
algorithm and well-posedness of the forward and inverse-scattering problems, and in
Sylvester and Winebrenner [10], they constructed a numerical inverse algorithm based on
the non-linear Riesz transform.

3. BERNOULLI}EULER BEAM GOVERNING EQUATION

Here we describe the choice of non-dimensional variables and we give the
non-dimensional form of the Bernoulli}Euler beam governing equation.

We consider a one-dimensional continuous model for an elastic beam under small
transverse motions, which are represented by the transversal displacement g(x, t) of the
neutral line of the beam cross-section. The variables x and t represent, respectively, the
space and time co-ordinates. The Bernoulli}Euler beam model assigns only transverse
inertia (i.e., ignores rotational inertia) and bending elasticity (i.e., ignores shear deformation)
to the continuum. We also consider the elastic restoring force due to the tensile force applied
to the beam. For the beam model considered, the governing equation for the transversal
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displacement results from the balance between the cross-sectional inertia force and the
gradient of the shear force due to the bending moment and tensile force, as follows:

(I(x)E(x)g
xx

)
xx
!(P(x)g

x
)
x
#o(x)A(x)g

tt
"0. (1)

A(x) and I(x) are, respectively, the cross-sectional area and its second moment. E(x) and
o(x) are, respectively, the modulus of elasticity and density of the material. P(x) represents
the tensile load applied to the beam. The Bernoulli}Euler beam is considered non-uniform
for 0)x)¸. For x)0 and x*¸, the beam is uniform, but not necessarily with the same
geometrical and material properties. We consider the following set of non-dimensional
variables:
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where j is the wavelength of the wave disturbance on the uniform part of the beam at x)0.
The quantities o

0
A

0
and E

0
I
0

are, respectively, the reference values for the mass per unit
length and for the #exural rigidity. The quantity h

0
is the half-beam-cross-section reference

height, and f
0

is the time non-dimensionalization factor. All reference quantities are taken
from the uniform part located at x)0. In terms of the non-dimensional variables, the
governing equation (1) assumes the form

(ei(s)y
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s
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#m(s)yqq"0. (3)

The non-dimensional mass per unit length m(s) and the non-dimensional #exural rigidity
ei(s) are de"ned as follows:
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Since we are interested in the interaction of mono-chromatic waves with the beam
non-uniformity, we assume the time dependence

exp (!iuq), (5)
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with u as the non-dimensional wave frequency. The non-dimensional governing equation
(3) assumes the form

(ei(s)y
ss
)
ss
!(P1 (s)y

s
)
s
!u2m (s)y(s)"0, (6)

which is a fourth order di!erential equation with variable coe$cients.

4. SECOND ORDER GOVERNING EQUATION FOR THE BERNOULLI}EULER BEAM

In this section, we derive asymptotically a second order di!erential equation governing
wave propagation along a non-uniform Bernoulli}Euler beam.

First, we consider a change of the dependent variable to transform the governing
equation (6) into a four-dimensional system of "rst order di!erential equations. Second, we
discuss the restrictions on the beam non-uniformity which allows wave propagation to be
governed by a two-dimensional system of "rst order di!erential equations, and from this
system of equations we obtain a second order di!erential equation through a sequence of
changes of the dependent variable. We also discuss the qualitative insight of the e!ects of the
non-uniformity on wave propagation given by the second order governing equation. Third,
we pay special attention to beams where the tensile force and the product of the beam
#exural rigidity by its mass per unit length are constants. When these restrictions are
satis"ed, the second order governing equation is an exact governing equation, and has
a Helmholtz-like form.

4.1. GOVERNING EQUATION FOR THE WAVE MODES AMPLITUDE

Here we consider a change of the dependent variable which transforms equation (6) in
a four-dimensional system of "rst order di!erential equations.

Along the uniform part of the beam, the general solution of the governing equation (6) is
given as a superposition of four wave modes, as follows:

y(s)"A exp (i k
1
s)#B exp (!i k

1
s)#C exp (k

2
s)#D exp (!k

2
s ). (7)

In equation (7), the "rst two wave modes are propagating modes, and the last two are
evanescent modes. Each wave mode has an associated wavenumber. For the propagating
modes, the wavenumbers are pure imaginary numbers with the same modulus, but opposite
phase. For the evanescent modes, the wavenumbers are real numbers with the same
modulus, but opposite sign. The wavenumbers i k

1
and k

2
are solutions of the dispersion

relation

ei k4!P1 k2!u2m"0. (8)

The wave mode amplitudes A, B,C and D are speci"ed by boundary conditions ("nite
beam) or by radiation conditions.

The rotation of the beam cross-section, the bending moment and the shear force can also
be written in terms of the wave modes.

We assume that the transverse displacement along the non-uniform part of the beam can
be written in the same form as in the case of the uniform beam, but now with the wave mode
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amplitudes and wavenumbers as functions of the space co-ordinate, as follows:

y(s)"A(s) exp (i k
1
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hggiggj
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The new dependent variables are de"ned by incorporating the phase factor to the wave
mode amplitudes. These new dependent variables are denoted as AI (s), BI (s), CI (s) and D3 (s),
according to equation (9). The wavenumbers are still given by the uniform system dispersion
relation (8), now assumed locally valid and with the non-dimensional #exural rigidity ei, the
non-dimensional mass per unit length m and the non-dimensional tensile force P1 as
functions of the space co-ordinate. The wavenumbers are now given by the equations

i k
1
(s)"

i

J2ei (s)
M!P1 (s)#JP1 2(s)#4u2ei(s)m(s)N1@2, (10)

k
2
(s)"

1

J2ei (s)
MP1 (s)#JP1 2(s)#4u2ei(s)m(s)N1@2. (11)

For the non-uniform beam, we assume that the rotation of the beam cross-section, the
bending moment and the shear force along the non-uniform beam are given in the same
form as in the case of the uniform beam, but now with wave mode amplitudes and
wavenumbers as functions of the space co-ordinate. The functions AI (s), BI (s), CI (s) and DI (s)
will be sought such that
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These representations for the rotation of the beam cross-section, for the bending moment
and for the shear force can be justi"ed if and only if equations (A.2)} (A.4) are satis"ed (see
Appendix A). This set of equations furnishes the three "rst order di!erential equations for
the quantities AI (s), BI (s), CI (s) and DI (s). If we substitute the equations for the transverse
displacement (9), for the bending moment (13) and for the shear stress (14) on the governing
equation (6), we obtain one more equation involving the quantities AI (s), BI (s), CI (s) and DI (s)
and their "rst order derivatives, which is equation (A.5) in Appendix A.
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Equation (A.5) plus equations (A.2)}(A.4) furnish a four-dimensional system of "rst order
di!erential equations for the new dependent variables AI (s), BI (s), CI (s) and DI (s), as follows:

G
dAI (s)
ds

dBI (s)
ds

dCI (s)
ds

dDI (s)
ds

H"[M(s)] G
AI (s)
BI (s)
CI (s)
DI (s)H . (15)

The equations describing the elements of the system matrix, denoted M(s), in terms of the
system parameters are given in Appendix A.

The linear combination of the quantities AI (s) and BI (s) accounts for the propagating
component of the wave disturbance along the non-uniform beam, and the linear
combination of the quantities CI (s) and DI (s) accounts for the evanescent component of the
wave"eld along the non-uniform beam. Radiation conditions for left or right incidence can
be written entirely in terms of the quantities AI (s) and BI (s). Therefore, under conditions of
weak or no coupling between the quantities AI (s) and BI (s) and the quantities CI (s) and DI (s),
wave propagation along the non-uniform beam should be entirely described by the
evolution of the quantities AI (s) and BI (s), as is shown in the next section.

4.2. ASYMPTOTIC SECOND ORDER GOVERNING EQUATION

We de"ne quantities that are useful in discussing the restrictions necessary for the
evolution of the quantities AI (s) and BI (s) to decouple asymptotically from the evolution of
the quantities CI (s) and DI (s).

The ratio l(s) between the inertia force per unit length and the #exural rigidity and the
ratio h(s) between the tensile load and the #exural rigidity are de"ned, respectively, as

l(s)"
u2m(s)

ei(s)
, h(s)"

P1 (s)
ei (s)

. (16, 17)

We can express the wavenumbers k
1
(s) and k

2
(s) and their derivative in terms of the

quantities de"ned above, according to equations (B.1)}(B.4) of Appendix B. The derivatives
of the quantities l(s) and h(s), present in equations (B.3) and (B.4) for the derivatives of the
wavenumbers, are given in terms of the beam parameters, as follows:
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ei (s)
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h (s)

ei(s)

dei

ds
. (18, 19)

The equations for elements of matrix M(s) are given in Appendix A in terms of the beam
parameters, their derivatives, and in terms of the wavenumbers k

1
(s) and k

2
(s) and their

derivatives. Therefore, we need to estimate the order of magnitude of these quantities to be
able to study the order of magnitude of the matrix elements M

jk
. The non-dimensional mass

per unit length and the non-dimensional #exural rigidity are considered as quantities of
order O(1). To estimate the order of magnitude of the derivatives of these quantities, we
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de"ne the ratio between the length scale j of the incident wave and the length scale j@ of the
non-uniformity variation as

K"

j
j@

. (20)

The magnitude of the non-uniformity in the non-dimensional #exural rigidity, in the
non-dimensional mass per unit length and in the non-dimensional tensile force per one
wavelength of the incident wave are de"ned as

max
0(s( 1̧

M Dei (s#1)!ei (s) DN&O(e@), (21)

max
0(s( 1̧

M Dm (s#1)!m (s) DN&O(e@ ), (22)

max
0(s( 1̧

M DP1 (s#1)!P1 (s) DN&O(d). (23)

Now, we can write the magnitude of the derivatives of the non-dimensional tensile force,
of the non-dimensional mass per unit length and of the non-dimensional #exural rigidity in
terms of the quantities de"ned above, as follows:

dei

ds
&O(e@K),

dm

ds
&O(eK),

dP1
ds

&O(dK). (24}26)

The ratio between the non-dimensional inertia force per unit length and the
non-dimensional #exural rigidity is a quantity of order O(1) for large values of the frequency
of the wave disturbance. The exception is the long wave limit, where l(s) is a quantity of
order of magnitude larger than one. In general, we can say that

l(s)&O(1). (27)

Based on the estimates above for the order of magnitude of the non-dimensional mass per
unit length, non-dimensional #exural rigidity, non-dimensional tensile force and their
derivatives, we are ready to estimate the order of magnitude of the elements of matrix M(s).
Since they can all be expressed, basically, in terms of the elements M

11
(s), M

21
(s), M

31
(s),

M
13

(s), M
33

(s), M
43

(s) and M
44

, these are the only ones which need to be analyzed. We
denote them as the basic elements of matrix M(s).

We consider two regimes. First, the non-dimensional tensile force is very small compared
to the non-dimensional #exural rigidity (hP0). Second, the non-dimensional tensile force is
of the same or larger order than the order of magnitude of the non-dimensional #exural
rigidity (h*1).

For each of the two regimes considered, we express in Appendix B the order of magnitude
of the wavenumbers and their derivatives. We also describe in detail the order of magnitude
of the basic elements of the matrix M(s).

4.2.1. Regime hP0

The order of magnitude of the basic elements of the matrix M(s) is given in Appendix B.1
in terms of the order of magnitude of the beam parameters and their derivatives, according
to equations (B.10)} (B.16). We de"ne eA as

eA"max Me, e@, dN. (28)
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Now, the order of magnitude of the basic elements of matrix M(s) is given as

M
11

(s)&O(l1@4), M
21

(s)&O(eAK), (29, 30)

M
31

(s)&O(eAK), M
13

(s)&O(eAK), (31, 32)

M
33

(s)&O(l1@4), M
43

(s)&O(eAK), M
44

(s)&O(eAK). (33}35)

We assume the non-uniformity steepness of the beam parameters to be small.
In other words,

eAK@1. (36)

According to equations (29)} (35) and under the restriction given by equation (36), the
evolution described by the four-dimensional system of "rst order di!erential equations (15)
can be asymptotically described by the evolution of a diagonal system of "rst order
di!erential equations with an error of O(eAK), which is small. This diagonal matrix is just the
main diagonal of matrix M(s). Therefore, under this regime and the restriction given above,
the evolution of the components describing the propagating and evanescent parts of the
solution can be considered decoupled with an error of the order of O(eAK). Since we want to
study resonance e!ects between the non-uniformity and the wave"eld, we keep the coupling
between the components describing the propagating part of the wave"eld. Therefore, the
propagating part of the solution is described with an error of the order of O(eAK) by
a two-dimensional system of "rst order di!erential equations with matrix given by the 2]2
upper left block of matrix M(s).

4.2.2. Regime h*1

The order of magnitude of the basic elements of the matrix M(s) is given in Appendix B.2
in terms of the order of magnitude of the beam parameters and their derivatives according
to equations (B.22)} (B.28).

We consider the same assumption as in the previous regime regarding the order of
magnitude of the steepness of the non-uniformity. We give the order of magnitude of the
basic elements of the matrix M(s), as follows:

M
11

(s)&O(l1@4), M
21

(s)&O(l~1@2heAK), (37, 38)

M
31

(s)&O(eAK), M
13

(s)&O(l1@4h1@2eAK), (39, 40)

M
33

(s)&O(h1@2), M
43

(s)&O(eAK), M
44

(s)&O(h1@2). (41}43)

According to equations (37)}(43), even with the assumption of small steepness, the
coupling between the propagation part and the evanescent part of the solution is
not necessarily small. For the propagating part of the solution to be described by a
two-dimensional system of "rst order di!erential equations, we need little energy to be
transferred from the propagating part of the solution to its evanescent part. The transfer of
energy from the propagating modes to the evanescent modes is governed by the elements
M

31
(s), M

32
(s), M

41
(s), and M

42
(s), which have an order of magnitude of the order of O (eAK).

Therefore, under the restriction given by equation (36), the transfer of energy between the
propagating and evanescent components of the wave"eld is small, and the evolution of the
propagating part of the wave"eld can be described by the two-dimensional system of "rst
order di!erential equation with matrix given by the 2]2 upper left block of matrix M(s).
The error in this approximation is of the order of O(eAK), which is small.
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In both regimes, if the restriction of small steepness in the non-uniformity is satis"ed, the
propagating part of the wave"eld can be described asymptotically by a two-dimensional
system of "rst order di!erential equations with matrix given by the 2]2 upper left block of
matrix M(s), as follows:

G
dAI (s)
ds

dBI (s)
ds H"C

M
11

(s) M
12

(s)

M
21

(s) M
22

(s)DG
AI (s)
BI (s)H . (44)

This two-dimensional system of equations can be reduced through a change of the
dependent variables to a second order di!erential equation, as discussed in the next section.

4.2.3. Second order di+erential equation

We describe the change of the dependent variables used to obtain the second order
governing equation from the system of equation (44), which governs the evolution of the
propagating part of the wave"eld.

The new dependent variables are t(s), the transverse displacement, and /(s), the rotation
of the beam cross-section due to the propagating component of the wave"eld, normalized
by !k

1
(s). These new dependent variables are related to the quantities AI (s) and BI (s)

through the matrix equation

G
t(s)

/(s)H"C
1

i

1

!iD G
AI (s)
BI (s)H . (45)

We substitute the matrix equation (45) into the system of equations (44). This leads to
a new system of equations in terms of the new dependent variables t and /.

The "rst equation of the system of equations for the dependent variables t and / allows
us to write the variable / in terms of the transverse displacement t and its derivative dt/ds.
If we substitute this expression for / into the second equation of the system of equations for
the dependent variables t and /, we obtain the second order di!erential equation

t
ss
#p(s)t

s
#q(s)t(s)"0. (46)

The quantities p(s) and q(s) are de"ned in terms of the beam parameters and in terms of
the wavenumber k

1
(s) and k

2
(s) as

p(s)"
1

ei(s)

dei (s)

ds
#

1

k2
1
(s)#k2

2
(s)

d

ds
(k2

1
(s)#k2

2
(s)), (47)

q(s)"
1

4 A
1

ei(s)

dei(s)

ds B
2
!

1

[k2
1
(s)#k2

2
(s)]2 C2 k

1
(s)

dk
1

ds
!

P1
2(ei(s))2

dei

dsD
2

#

1

k2
1
(s)#k2

2
(s) G

d

dsC2k
1
(s)

dk
1

ds
#

k2
1
(s)

ei (s)

dei

ds DH#k2
1
(s). (48)

Let us write this second order equation in a more standard form through a change of the
dependent variable, which is given below by the equation

t(s)"s(s) expA!
1

2 P
s
p(t) dtB"s(s) MP1 2(s)#4u2m(s)ei(s)N~1@4. (49)
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Equation (46) reduces to the form

s
ss
#Q(s)s(s)"0. (50)

The coe$cient function Q(s) is given in terms of p(s) and q(s) by the equation

Q(s)"!

1

2

dp

ds
!

1

4
(p(s))2#q(s). (51)

In terms of the beam non-dimensional #exural rigidity, non-dimensional tensile force and
non-dimensional mass per unit length, the coe$cient function Q(s) assumes the form

Q(s)"!

1

2
F(s)~1@2

d2PM
ds2

!

1

4F(s)A
dP1
dsB

2
#

1

4
F(s)~3@2

dF

ds

dP1
ds

#k2
1
(s), (52)

with

F(s)"P1 (s)2#4u2m(s)ei(s). (53)

Before discussing the aspects of the qualitative behavior of the second order di!erential
equation (49), we discuss the radiation conditions for left and right wave incidence. The
radiation conditions are imposed on the uniform parts of the beam (sP$R). In terms of
the variable t(s), the radiation conditions for left and right wave incidence follows.

f For left wave incidence we have the radiation conditions

t(s)"G
A exp (i k~

1
s)#R~A exp (!ik~

1
s)

¹~A exp (ik`
1

s)

as sP!R,

as sP#R.
(54)

f For right wave incidence we have the radiation conditions

t(s)"G
¹`A exp (!ik~

1
s)

A exp (!ik`
1

s)#R`A exp (ik`
1

s)

as sP!R,

as sP#R.
(55)

A is the amplitude of the incident wave, and R~ and ¹~ (R` and ¹`) are the re#ection
and transmission coe$cients for left (right) wave incidence radiation condition. The
wavenumbers k~

1
and k`

1
are the values of the wavenumber k

1
(s) for s)0 and s* 1̧

respectively.
Along the uniform part of the beam s(s) is proportional to t(s). Therefore, the radiation

conditions in terms of the dependent variable s(s) has the same form as the radiation
condition in terms of the dependent variable t(s). If the parameters of the beam are the same
at both semi-in"nite uniform parts, the radiation conditions in terms of the variables t and
s are exactly the same. The radiation condition in terms of the variable s(s) follows.

f For left wave incidence we have the radiation conditions

s(s)"G
A exp (ik~

1
s)#R3 ~A exp (!ik~

1
s)

¹I ~A exp (ik`
1

s)

as sP!R,

as sP#R.
(56)

f For right wave incidence we have the radiation conditions

s(s)"G
¹I `A exp (!ik~

1
s)

A exp (!ik`
1
s)#R3 `A exp (ik`

1
s)

as sP!R,

as sP#R.
(57)
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R3 ~ and ¹3 ~ (RI ` and ¹I `) are the re#ection and transmission coe$cients for left (right)
wave incidence in terms of the variable s(s). Between the coe$cients ¹

$ and ¹3 $ we have
the following relation:

¹I ~"G
(P

0
)2#4u2m

0
ei

0
(P

1
)2#4u2m

1
ei

1
H
1@4

¹~, (58)

¹I `"G
(P

1
)2#4u2m

1
ei

1
(P

0
)2#4u2m

0
ei

0
H
1@4

¹`. (59)

In equations (58) and (59), the indices 0 and 1 in the beam parameters refer, respectively,
to the parameter values for s)0 and s* 1̧ . The re#ection coe$cients R$ are equal to the
re#ection coe$cients RI $.

In the next section, we discuss the qualitative behavior of the second order di!erential
equation in terms of the Bernoulli}Euler beam parameters.

4.2.4. Properties of the second order di+erential equation

The second order di!erential equation (49) in terms of the variable s (s) satis"es energy
#ux conservation. In other words,

DRI $D2#D¹3 $D2"1. (60)

This is not true for the second order di!erential equation (46). Its re#ection and
transmission coe$cients satisfy the relation

$i2k
1
A2 ($D¹GD2$DRGD2G1)"expA!P

1̧

0

p(t) dtB. (61)

The coe$cient function Q(s) can be simpli"ed if we make assumptions regarding the
Bernoulli}Euler beam parameters. If these parameters are constants, the coe$cient function
Q(s) is a constant, which is equal to the square of the wavenumber k

1
. The second order

equation (50) in this case is a one-dimensional Helmholtz equation with constant
wavenumber k

1
, which is the wavenumber associated with the propagating modes for the

Bernoulli}Euler beam with constant material and geometrical properties. Therefore, along
the uniform part of the beam, the coe$cient function Q(s) gives the right wavenumber for
the propagating modes.

If we assume only the tensile force to be a constant, equation (52) simpli"es to

Q(s)"k2
1
(s). (62)

The second order di!erential equation under the restriction of constant tensile force looks
like a Helmholtz equation. This is not true, since we cannot write the coe$cient function
Q(s) as a &&wave frequency'' times an index of refraction. The dependence on the frequency
for the coe$cient function Q(s) in the above form is more complicated than the dependence
encountered in Helmholtz-like equations, as revealed by equation (10). If we impose special
restrictions on the non-dimensional mass per unit length and on the non-dimensional
#exural rigidity, we end up with a Helmholtz-like equation, which is discussed in the next
section.

Since the asymptotic governing equation is a second order di!erential equation, its
qualitative behavior with respect to the non-dimensional tensile force, non-dimensional
mass per unit length and non-dimensional #exural rigidity is revealed through the study of
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the sign of the coe$cient function Q(s). When the non-dimensional tensile is a constant, the
coe$cient function Q(s) is always positive, and the governing equation predicts propagating
wave-like solutions. If the tensile force is not a constant, the coe$cient function Q(s) (see
equation (52)) may assume negative values, which implies exponentially decaying or
growing solutions. If this happens for some interval of s along the beam, we have
exponentially small wave transmission and almost complete wave re#ection. If Q(s) happens
to be negative for a range of wave frequencies at disjoint intervals of the space co-ordinate s,
trapped modes for some wave frequency values may exist.

The coe$cient function Q(s) may be negative for some range of s, according to equation
(52), if and only if

d2PM
ds2

'0,
dF

ds

dP1 (s)
ds

(0. (63, 64)

The full governing equation should behave in the way predicted by the second order
governing equation (49), specially if the restriction of small non-uniformity steepness is
satis"ed. Therefore, a Bernoulli}Euler beam under variable tensile force satisfying
equations (63) and (64) may have trapped modes, and allow only exponentially small
transmission. In section 5, we give an example of a non-uniformity which satis"es equations
(63) and (64) for intervals of the space co-ordinate s.

4.3. SECOND ORDER GOVERNING EQUATIONS AS AN EXACT GOVERNING EQUATION

According to the system of equations (15), the coupling between the propagating and
evanescent part of the wave"eld is governed by the elements M

jk
(s) and M

kj
(s) ( j"1, 2 and

k"3, 4). If the non-dimensional tensile force and the product of the non-dimensional mass
per unit length by the non-dimensional #exural rigidity are constants, we show in Appendix
C that the matrix elements M

jk
(s) and M

kj
(s) are zero, which implies that the second order

di!erential equation (49) is an exact equation governing monochromatic wave propagation
along the non-uniform beam, and assumes the Helmholtz-like form

s
ss
#X) 2(u, P1 , C)n8 2(s)s(s)"0. (65)

nJ (s) is the index of refraction, which is given in terms of the non-dimensional #exural
rigidity or non-dimensional mass per unit length, according to the equation

nJ (s)"
1

Jei(s)
"S

m (s)

C
. (66)

The &&wave frequency'' X) (u, P1 , C) is de"ned by the equation

X) (u, P1 , C)"G!
P1
2
#

1

2
JP1 2#4u2CH

1@2
. (67)

We de"ne the dimensional counterpart of s(s) as w(x). The relation between these two
dependent variables is given by the equation

w(x)"
h
0
JE

0
I
0

j
s (s). (68)
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The square of the variable w(x) has the dimension of force times length squared. The
dimensional form of the second order governing equation (65) follows:

w
xx
#XI 2 (P,X, C @ )n (x)2w(x)"0, (69)

where the index of refraction n(x) is given by the equation

n(x)"
1

JEI(x)
"S

oA(x)

C@
. (70)

The &&wave frequency'' XI (P, X, C@ ) has the dimension of force and its expression in terms
of the constant tensile force P and the constant C@ is given by the equation

XI (P, X, C@ )"G!
P

2
#

1

2
JP2(x)#4XC @H

1@2
. (71)

The constant C@ has the dimension of mass times energy, and it is the value of the product of
the mass per unit length by the #exural rigidity along the entire beam.

5. APPLICATIONS*THE ANALYSIS PROBLEM

In this section, we consider wave interaction with "ve examples of non-uniformities. For
the "rst three examples, the beam material properties are assumed to be constant. We allow
variations only in the cross-sectional geometry and in the tensile force. For the last two
examples, we prescribe the #exural rigidity and the mass per unit length such that their
product is a constant. The tensile force is assumed constant.

For each example of non-uniformity, we give results for the modulus of the re#ection
coe$cient for both governing equations. Results from the second and full governing
equations are obtained through numerical simulation. The exception is the last example of
non-uniformity, where the second order governing equation has an analytic solution.

We use the "nite di!erence method to simulate numerically the governing equations. The
radiation conditions are incorporated in the "nite di!erence method.

A detailed description of each example considered is given in Table 1.

5.1. NON-UNIFORM GEOMETRY

For the "rst three examples, we considered a beam with rectangular cross-section. The
only non-uniformity is in the changing dimensions of the cross-section. The material
properties are considered constant along the entire beam, which is assumed to be made of
aluminium with density o

0
"2)7]103 kg/m3 and with modulus of elasticity

E
0
"7)1]1010N/m2. Along the non-uniform part of the beam, the height of the

cross-section varies in a prescribed way. The heights below and above the mean line are
prescribed by di!erent given functions. Along the uniform parts of the beam (s)0 and
s* 1̧ ), the height h

0
of the cross-section is constant and its value is 0)01m. The width of the

cross-section is constant along the entire beam, and it is denoted as b. The value of the width
b is 0)05m.

The non-dimensionalization constants for the mass per unit length and #exural rigidity in
the "rst three examples are o

0
A

0
"o

0
bh

0
and E

0
I
0
"E

0
(bh3

0
/12), and the non-dimensional

expressions for the mass per unit length and #exural rigidity in terms of the functions f (s)



TABLE 1

Description of the examples

Example First Second Third Fourth Fifth
Associated "gure Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Non-dimensional Equation (73) Equation (77) Equation (78)
#exural rigidity
Non-dimensional mass Equation (72) m(s)ei(s)"C
per unit length
Non-dimensional constant Equation (76) constant
tensile force
Function f (s) Equation (74) Equation (75)
Function g(s) "f (s) "!f (s) "!f (s)
Constant C 1 1
Non-uniformity A/h

0
A/h

0
A
h0

, A
p
, k

g
A, k

g
, s

0
, c S, N, M

parameters and k
p

and i and s
0

Parameter 0)2, 0)1 0)1, 0)05 0)05 and
A/h

0
and 0)05 and 0)01 0)01

Parameter 0)2, 0)1
A and 0)05
Parameter 0N and
A

P
10 000N

For other Caption of Caption of Table 3
parameters Figure 3 Figure 4
Function Q(s) Equation (62) Equation (52) XK 2(u, P1 , C)n8 2 (s) and

equations (66) and (67)
Purpose Asymptotic behavior of

second order governing
equation

Both governing
equations with same
qualitative behavior

Second order equation as an
exact governing equation

W
A

V
E

P
R

O
P

A
G

A
T

IO
N

A
L

O
N

G
B

E
A

M
S
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and g(s), describing the height non-uniformity, are

m(s)"G
1 for s)0 and s* 1̧ ,

1#
A

h
0

( f (s)!g(s)) for 0(s( 1̧ ,
(72)

ei(s)"

G
1 for s)0 and s* 1̧ ,

A1#
A

h
( f (s)!g(s))B

3
#3A1#

A

h
( f (s)!g(s))BA

A

h
( f (s)#g(s))B

2
for 0(s( 1̧ .

(73)

A is the amplitude of the height non-uniformity.

5.1.1. Constant tensile force

For the "rst two examples the tensile force is assumed constant. If we substitute equations
(72) and (73) into equation (62) for the coe$cient function Q(s), we obtain its expression in
terms of the functions f (s) and g(s).

The function f (s) for the "rst two examples is

f (s)"cos (k
g
js#c ). (74)

The parameter k
g
j is the non-dimensional wavenumber of the non-uniformity and here

c is a phase factor. We consider that k
g
"2n, which implies a non-uniformity with

wavelength equal to 1m. The size of the non-uniformity is equal to 22 times its wavelength.
The function g(s) is speci"ed in terms of the function f (s) according to Table 1.

For the "rst example, the non-uniformity comes from the #exural rigidity, and in its
expression we have the square of the parameter A/h

0
. Therefore, the actual non-uniformity

magnitude is (A/h
0
)2. The actual wavelength of the non-uniformity is equal to half the

wavelength of the function f (s).
For the second example, the non-dimensional mass per unit length is a linear function

of f (s), and the magnitude of the uniformity is given by the parameter A/h
0
. For the

non-dimensional #exural rigidity, the magnitude in the non-uniformity is now given by
the cube of the parameter A/h

0
. The non-dimensional mass per unit length and the

non-dimensional #exural rigidity have the same periodicity as the function f (s). Values of
the non-uniformity parameter A/h

0
are given in Table 1.

Results regarding the "rst and second examples are illustrated, respectively, in Figures 1
and 2. A detailed description of Figures 1 and 2 is given in the second and third column of
Table 2. According to parts (b) and (d) of Figures 1 and 2, the agreement between the results
for the modulus of the re#ection coe$cient from the numerical simulation of both
governing equations increases as the magnitude (parameter A/h

0
) of the geometric

non-uniformity decreases. This illustrates the asymptotic nature of the second order
governing equation with respect to the steepness in the beam non-uniformity.

The peak in the re#ection coe$cient in part (a) of Figure 1 and in parts (a) and (c) of
Figure 2 is due to the Bragg scattering phenomenon. Bragg scattering peaks in the re#ection
coe$cient occur when the ratio between the wavenumber of the incident wave multiplied by



n

Figure 1. Re#ection coe$cient as a function of wave frequency of the incident wave. DRD: modulus of the
re#ection coe$cient. DDRD: di!erence between modulus of the re#ection coe$cient. Vertical arrows: Bragg
scattering peaks. In parts (a) and (c), lines***, - - - - - - - and } } } } : numerical simulation of the full governing
equation (6), respectively, for A/h

0
"0)2, 0)1 and 0)05; lines ) ) ) ) ) ) ) ) ), - ) - ) - ) - ) - ) and - ) ) - ) ) - ) ) - : numerical

simulation of the second order governing equation (50) for A/h
0
"0)2, 0)1 and 0)05. In parts (b) and (d), lines

***, - - - - - - - and } } } } } : di!erence between modulus of the re#ection coe$cient, respectively, for A/h
0
"0)2,

0)1 and 0)05.
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2 and the non-uniformity wavenumber is a natural number. The Bragg scattering peak
(arrow) illustrated in Figures 1 and 2 are "rst Bragg scattering peaks.

5.1.2. <ariable tensile force

Results in Figure 3 for the third example illustrate the fact that the qualitative behavior
predicted by the second order governing equation is in agreement with the results obtained
using the full governing equation. Results presented in Figure 3 are described in the fourth
column of Table 2.

For the third example, the function f (s) is

f (s)"!sech (k
g
j (s!s

0
)). (75)



Figure 2. Re#ection coe$cients as a function of wave frequency of the incident wave. DRD: modulus of the
re#ection coe$cient. DDRD: di!erence between modulus of the re#ection coe$cient. Vertical arrows: Bragg
scattering peaks. In parts (a) and (c), lines***, - - - - - - - and } } } } : numerical simulation of the full governing
equation (6), respectively, for A/h

0
"0)1, 0)05 and 0)01; lines ) ) ) ) ) ) ) ) ), - ) - ) - ) - ) - ) and - ) ) - ) ) - ) ) -: numerical

simulation of the second order governing equation (50), respectively, for A/h
0
"0)1, 0)05 and 0)01. In parts (b) and

(d), lines ***, - - - - - - - and } } } }} : di!erence between modulus of the re#ection coe$cient, respectively, for
A/h

0
"0)1, 0)05 and 0)01.
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The product A k
g
j/h

0
gives the magnitude of this non-uniformity steepness. The function

g(s) is related to the function f (s) according to Table 1. The non-dimensional tensile force is
given as

P1 (s)"!A
p
sech (k

p
j(s!s

0
)), (76)

where A
p

gives the magnitude of the non-dimensional non-uniformity in the tensile load,
and the product A

p
k
p
j gives its steepness.

The non-dimensional mass per unit length and the non-dimensional #exural rigidity
reaches a maximum or minimum at s"s

0
, and the non-dimensional tensile force reaches

a maximum negative value at s"s
0
. We may choose the values of the non-uniformity

parameters A/h
0
, A

p
, k

g
and k

p
such that the coe$cient function Q(s) reaches negative values

for intervals of the space co-ordinate. When this happens, the second order equation (50)
predicts exponentially small transmission and almost complete re#ection.

For part (b) of Figure 3, we chose the parameters A/h
0
, A

p
, k

g
and k

p
such that the

coe$cient function Q(s) assumes negative values for two intervals of the space co-ordinate.



TABLE 2

Description of the ,gures

Figure 1 2 3 4 5

Results Modulus of the re#ection coe$cient for left wave incidence as a function of the wave frequency

Part (a)
description

Modulus of the re#ection coe$cient from
the numerical simulation of equations (6)
and (50) for 3 values of A/h

0
and with

P"0N

Modulus of the re#ection
coe$cient from the
numerical simulation of
equations (6) and (50)
with A/h

0
"0)05 and

0)01, A
P
"0N, k

P
"0

and k
g
"2

Modulus of the re#ection
coe$cient from the
numerical simulation of
equations (6) and (50)
with A"0)2, 0)1 and
0)05 and P"0N

Modulus of the re#ection
coe$cient from the
numerical simulation of
equation (6) and from
equation (79) with k

g
"10

and 5

Part (b)
description

Di!erence between the modulus of the
re#ection coe$cient from the numerical
simulation of equations (6) and (50) for
three values of A/h

0
with P"0N

Same as part (a), but
with A

P
"10 000N,

k
p
"10 and k

g
"2

Same as part (a), but
with P"10 000N

Same as part (a)

Part (c)
description

Same as part (a), but with P"10 000N Intervals of s where
Q(s)(0 as a function
of wave frequency

Same as part (a)

Part (d)
description

Same as part (b), but with P"10 000N Same as part (a)

Part (e)
description

Non-dimensional #exural
rigidity distributions

Resonance First Bragg
scattering peak
in part (a)

First Bragg scattering
peak in parts (a) and (c)

First and second Bragg
scattering peaks in part
(a) and "rst peak in
part (b)
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Figure 3. Modulus of the re#ection coe$cient as a function of wave frequency of the incident wave. In parts (a)
and (b), lines*** and - - - - - - -: numerical simulation of the full governing equation (6), with A/h

0
, respectively,

0)05 and 0)01; lines ) ) ) ) ) ) ) ) ) and - ) - ) - ) - ) - ) : numerical simulation of the second order governing equation (50) with
A/h

0
, respectively, 0)05 and 0)01. Part (c) displays contour plots for Q(s)"0. The letters P and N in part (c) stand

for positive and negative values of Q(s). Line - - - - - - - : A
P
"10 000N, k

p
"10, k

g
"2 and A/h

0
"0)05, and line

- ) - ) - ) - ) - ) : A
P
"10 000N, k

p
"10, k

g
"2 and A/h

0
"0)01.
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In this case, large wave re#ection is observed. The size of the intervals where Q(s) is negative
is illustrated in part (c) of Figure 3 as a function of the frequency of the incident wave.

5.2. TENSILE FORCE AND THE MASS PER UNIT LENGTH TIMES FLEXURAL RIGIDITY

ARE CONSTANT

For the fourth and "fth examples, the tensile force and the product of the #exural rigidity
by the mass per unit length are constants. Under such conditions, the results predicted by
both governing equations are the same, as illustrated in Figures 4 and 5. These "gures are
described, respectively, in the "fth and sixth columns of Table 2.

The fourth example is described by the "fth column of Table 1. The non-dimensional
#exural rigidity for this example is prescribed according to the equation

ei (s)"1#
A

2
cos (k

g
js#c) (tanh(i(s#s

0
))!tanh(i(s!s

0
))), (77)

which is a periodic function along a "nite part of the beam and otherwise zero.
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The "fth example is described in the sixth column of Table 1. The non-dimensional
#exural rigidity for this example is

ei (s)"S!N
exp (k

g
j (s#s

0
))

1#exp (k
g
j (s#s

0
))
!4M

exp (k
g
j (s#s

0
))

(1#exp (k
g
j (s#s

0
)))2

. (78)

For N"0, equation (78) is basically the square of the hyperbolic secant function, and for
M"0, equation (78) gives basically the hyperbolic tangent function. The second order
equation for this non-uniformity has an analytic solution in terms of hyper-geometric
functions, as discussed in Appendix D. The re#ection and transmission coe$cients are given
in terms of gamma functions by the equations

R~"

C (b)C (1!c)C(c!d)

C (b!c#1)C(c!1)C (1!d)
, (79)

¹~"

C(b)C(c!d)

C (b!d#1)C (c!1)
. (80)
Figure 4. Modulus of the re#ection coe$cient as a function of wave frequency of the incident wave. Non-
dimensional #exural rigidity and mass per unit length de"ned by equations (77) and (C.3), with C"1, i"20,
k
g
"2n, s

0
"10)25 and c"0. Vertical arrow: Bragg scattering peak. Lines***, - - - - - - and } } } } } : numerical

simulation of the full governing equation (6) with A, respectively, equal to 0)2, 0)1 and 0)05. Lines ) ) ) ) ) ) ) ), - ) - ) - ) - ) -
and - ) ) - ) ) - ) ) -: numerical simulation of the second order governing equation (50) with A, respectively, equal to 0)2,
0)1 and 0)05.



Figure 5. Modulus of the re#ection coe$cient as a function of wave frequency of the incident wave. Non-
dimensional #exural rigidity and mass per unit length de"ned by equations (78) and (C.3) with C"1. Lines - - - - -
and ) ) ) ) ) ) ) ) : numerical simulation of the full governing equation (6). Symbols h and n: closed form solution given
by equations (78) and (81). Line - - - - - - - and symbol h : k

g
"10. Line ) ) ) ) ) ) and symbol n: k

g
"5. Values of the

parameters S, N, M and s
0

and the tensile force P for parts (a), (b), (c) and (d) are listed in Table 3. In part (e), lines
*** and - - - - - - : non-dimensional #exural rigidity distribution used in parts (a) and (b) with k

g
, respectively,

equal to 10 and 5, and lines - ) - ) - ) - ) - ) and ) ) ) ) ) ) ) ) : non-dimensional #exural rigidity distribution used in parts (c)
and (d) with k

g
, respectively, equal to 10 and 5.
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The quantities b, c and d are given in terms of the parameters XI (u, P1 , C), k
g
, j, S, N and

M according to the equations

c"1#i2
XI (u, P1 ,C)

Dk
g
jD

JS, (81)

d"
1

2
#

1

2 C1!
16XI (u, P1 , C)2M

(k
g
j)2 D#i

XI (u,P1 , C)

Dk
g
jD

(JS!JS!N), (82)

b"
1

2
#

1

2 C1!
16XI (u, P1 , C)2M

(k
g
j)2 D#i

XI (u,P1 , C)

Dk
g
jD

(JS#JS!N), (83)



TABLE 3

Parameters for the non-dimensional -exural rigidity and tensile force values

Figure Parameter S Parameter N Parameter M Parameter s
0

Tensile force P

5(a) 1)0 0)5 0)0 0)0 0N
5(b) 1)0 0)5 0)0 0)0 10 000N
5(c) 1)0 0)0 !0)5 0)0 0N
5(d) 1)0 0)0 !0)5 0)0 10 000N
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as suggested by Brekhovskikh [11, p. 55]. The parameter XI (u, P1 , C) is de"ned by equation
(67).

According to Figure 5, the modulus of the re#ection coe$cient from the numerical
simulation of the full governing equation (6) agrees with the modulus of the re#ection
coe$cient given by equation (79). The non-uniformity parameters used in parts (a)}(d) of
Figure 5 are displayed in Table 3. Part (e) of Figure 5 illustrates the distributions of the
non-dimensional #exural rigidity along the beam used to generate the results in parts
(a)}(d) of Figure 5.

6. APPLICATIONS*THE DESIGN PROBLEM

We are going to design the non-uniformity in the mass per unit length and in the #exural
rigidity of a Bernoulli}Euler beam such that the relationship between the re#ection
coe$cient and the wavelength of the incident wave has a prescribed form.

We assume the tensile force applied along the beam and the product of the mass per unit
length by the #exural rigidity of the beam to be constants. Under these restrictions, the
second order governing equation is an exact governing equation for wave propagation
along the non-uniform Bernoulli}Euler beam. We consider a non-uniformity shape such
that the second order governing equation for the Bernoulli}Euler beam has a known
analytical solution. In this situation, the relation between the re#ection coe$cient and the
wavelength of the incident wave can be derived in closed form. The parameters describing
the non-uniformity shape, i.e., its steepness, size and amplitude, are also the parameters of
the relation between the re#ection coe$cient and the wavelength of the incident wave.
Therefore, if we prescribe the form of the relationship between the re#ection coe$cient and
the wavelength of the incident wave, we can determine the desired shape of the non-
uniformity in mass per unit length and in #exural rigidity.

We consider a Bernoulli}Euler beam consisting of three uniform pieces with a constant
tensile force P applied to it. The distribution of mass per unit length and #exural rigidity for
each piece is de"ned by the equations

oA(x)"G
oA

0
oA

1

for x(0 and x'¸,

for 0)x)¸,
(84)

EI(x)"G
EI

0
EI

1

for x(0 and x'¸,

for 0)x)¸.
(85)

The restriction that the product of the mass per unit length by the #exural rigidity is
a constant is expressed by the equation

oA
0
EI

0
"oA

1
EI

1
"CA. (86)
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The value of the constant CA is "xed by equation (86), since the quantities oA
0
and EI

0
are

assumed known.
The second order governing equation for the Euler}Bernoulli beam under such

restrictions assumes the form (69), and its coe$cient function in terms of the beam
parameters is

XI 2 (X,P,CA)n (x)2"G
k2
0
"

1

EI
0
G!

P

2
#

1

2
JP2#4X2CAH for x(0 and x'¸,

k2
1
"

1

E
1
I
1
G!

P

2
#

1

2
JP2#4X2CAH for 0)x)¸.

(87)

The quantity X is the dimensional frequency of the incident wave. k
0

and k
1

are
wavenumbers.

According to equation (87), the wavenumber k
1

can be written in terms of the wavelength
j of the incident wave, as follows:

k
1
"

EI
0

EI
1

2n
j

. (88)

Equation (69) has an analytical solution for the function XI 2(X, P, CA )n (x)2 de"ned by
equation (87). We consider the radiation condition of left wave incidence given by equation
(56) with k$

1
"k

0
.

The re#ection coe$cient for left wave incidence can be written in terms of the
wavenumbers k

0
and k

1
and in terms of the size ¸ of the part of the beam with unknown

properties, according to the equation

RI ~"

a(1!b)

1#a2b
, (89)

where the quantities, a, b and C are de"ned according to the equations

a"
k2
0
!k2

1
k
0
#k

1

"

EI
1
!EI

0
EI

1
#EI

0

, (90)

C"4k
1
¸"

8n
j

EI
0

EI
1

¸, b"exp (iC ), (91, 92)

The modulus of the re#ection coe$cient RI ~ is

DRI ~D"GA
a(1!cos(C)) (1!a2 cos (C ))

(1!a2 cos (C ))2#a4 (sin(C))2
#

a3 (sin (C ))2

(1!a2 cos (C ))2#a4 (sin (C))2B
2

#A!
a sin(C ) (1#a2 cos (C ))

(1!a2 cos(C))2#a4 (sin (C))2
#

a3(1!cos(C)) sin (C )

(1!a2 cos (C))2#a4 (sin (C ))2B
2

H
1@2

.

(93)

The re#ection coe$cient R3 ~ is an oscillatory function of the wavelength j of the incident
wave, according to equations (91) and (93). According to equation (93), the re#ection
coe$cient attains zero value at a discrete set of wavelengths of the incident wave. These are



TABLE 4

Design problem steps

Step Description

Constant CA Given by equation (86) in terms of the known quantities oA
0

and EI
0

Chose j
a

We chose a desired wavelength of perfect transmission. No restriction posed on
this choice

Chose j
b

Next wavelength of perfect transmission. It has to satisfy the condition of
perfect transmission (94), which can be written as j

b
"(n/(n!1))j

a
for

n a natural number. This relation "xes the value of n

Chose DR
max

D We chose the maximum value of the modulus of re#ection coe$cient for
j
a
(j(j

b
. According to equations (92) and (93),

(d/dj)DRD"0P(d/dC) DRD"0 implies C"mn with m an integer number.
C"n#2mn, with m integer, gives DR

max
D"2a/(a2#1)

Obtain a This quantity is de"ned by equation (90). In terms of DR
max

D, we chose a" 1DR
max

D

(1!J1!DR
max

D2)

Obtain EI
1

Given in terms of a as EI
1
"((a#1)/(1!a)) EI

0
Obtain ¸ The size of the part of the beam to be designed, denoted as ¸, is given by the

equation ¸"nj
a
EI

1
/4EI

0
"(nj

a
/4) (a#1)/(1!a)

Obtain oA
1

The mass per unit length of the part to be designed is given by the equation
oA

1
"CA/EI

1
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the wavelengths for perfect wave transmission. They satisfy the condition for perfect
transmission,

1!exp (iC )"0. (94)

We design the quantities oA
1
, EI

1
and ¸ to have perfect transmission at chosen

wavelengths j
a
and j

b
(j

b
'j

a
). We also prescribe the maximum value that the modulus of

the re#ection coe$cient assumes for wavelengths between j
a

and j
b
. Once we prescribe

a wavelength of perfect transmission, i.e., j
a
, the next wavelength of perfect transmission,

i.e., j
b
, could not be prescribed in an arbitrary way.

First, we chose two desired wavelengths of perfect transmission, i.e., j
a
and j

b
, but with j

b
as a function of j

a
such that the condition for perfect transmission, as given in the third line

of Table 4, is satis"ed. Second, we chose the maximum value of the modulus of the re#ection
coe$cient for j

a
(j(j

b
. With these three quantities chosen, we follow the steps given in

Table 4.
In Figure 6, we present plots of equation (93) as a function of the wavelength of the

incident wave, and we compare them with the values of the re#ection coe$cient obtained
from the exact solution of the full governing equation. These values of the modulus of the
re#ection coe$cient have been obtained in Appendix E.

We also present Table 5 with the values of the designed mass per unit length oA
1

and #exural rigidity EI
1
, respectively, as a fraction of the known values of the mass per

unit length oA
0

and #exural rigidity EI
0
. We also give the chosen wavelengths of

perfect transmission j
a

and j
b
, the size ¸ and the maximum value of the modulus of the

re#ection coe$cient DR3 ~D
max

. These values presented in Table 5 are associated with
Figures 6(a)} (d).



Figure 6. Modulus of the re#ection and transmission coe$cients as a function of wavelength of the incident
wave for the designed Euler}Bernoulli beam. DRI ~D from equation (93): - - - - - -. D¹I ~D"J1!DRI ~D2 : ) ) ) ) ) ) ) ) )
. Numerical simulation for the re#ection coe$cient (E.13): h. Numerical results for the transmission coe$cient
(E.13): n. Properties of the designed beams for (a), (b), (c) and (d) are given in Table (5).

TABLE 5

Parameters of the designed Bernoulli}Euler beam

Figure Ratio oA
1
/oA

0
Ratio EI

1
/EI

0
j
a

j
b

DR~D
max

Length ¸

6(a) 0)11 9)0 1)0m 2)0m 0)8 2)736m
6(b) 0)33 3)0 1)0m 2)0m 0)5 1)914m
6(c) 0)33 3)0 0)75m 1)5m 0)5 1)436m
6(d) 0)0526315789 19)0 0)75m 1)5m 0)9 2)747m
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7. DISCUSSION AND CONCLUSIONS

In the previous section, we illustrated how to use a Helmholtz-like second order
di!erential equation with a known solution to design a non-uniform Bernoulli}Euler beam
with constants tensile force and product of the #exural rigidity by the mass per unit length
such that the functional relation between the re#ection coe$cient and the wavelength of the
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incident wave had a prescribed form. This approach to the design problem is limited, since
there are few Helmholtz-like second order di!erential equations with variable coe$cient
that have analytical solutions. To handle general design problems, a more general approach
is necessary.

We discuss how to apply inverse-scattering techniques for the one-dimensional
Helmholtz equation in the half line to the design problem of a Bernoulli}Euler beam under
constant tensile force and with the product of the mass per unit length by the #exural
rigidity being a constant.

Under the restriction mentioned above, wave propagation along a non-uniform
Bernoulli}Euler beam is governed by the second order di!erential equation (69). The
relationship between the frequency of the incident wave X and the &&wave frequency'' XI is
given by equation (71). The constant tensile force P enters as a parameter in equation (71)
and the constant C@ is the value of the product of the mass per unit length times the #exural
rigidity along the entire beam.

Once the value of the tensile force is prescribed, the relationship between X and XI is
one-to-one for X*0. Then, the knowledge of the functional relation between the re#ection
coe$cient and frequency of the incident wave X implies that we know the functional
relation between the re#ection coe$cient and the &&wave frequency'' XI . Therefore, we can
apply inverse-scattering techniques developed for the Helmholtz equation on the half line to
design the index of refraction n(x) of equation (69) for x'0, given a prescribed functional
relation between the re#ection coe$cient at x"0 and the &&wave frequency'' XI . Designing
the index of refraction of equation (69) implies designing the inverse of the #exural rigidity
of the Bernoulli}Euler beam. Once the #exural rigidity is obtained from the design of the
index of refraction n(x), the mass per unit length follows from the restriction given by
equation (70).

Regarding techniques to solve the inverse problem for the Helmholtz equation on the half
line, we can mention the non-linear approximate method described in Jaggard and Kim
[12] and the exact method based on layer-stripping technique described in references
[9, 10]. These techniques to handle the inverse}scattering problem can be applied to design
the non-uniformity in a Bernoulli}Euler beam under the restrictions of the tensile force and
the product of the mass per unit length by the #exural rigidity being constants, as discussed
above. Bernoulli}Euler beams satisfying the restrictions described above can be built, and
they could be useful in engineering applications, where passive vibration isolation is desired.

According to the numerical results displaced in section 5, the second order governing
equation (50) recovers the behavior predicted by the full governing equation (6) for general
non-uniformities when its steepness is small. The second order governing equation (50) is
useful in studying the wave-scattering phenomenon along weakly non-uniform
Bernoulli}Euler beams of many wavelengths. Under the restriction of the tensile force and the
product of the mass per unit length by the #exural rigidity being constants, the second order
governing equation (50) is able to predict wave propagation along the Bernoulli}Euler beam
even for large deviation from uniformity, since it is an exact governing equation.

Higher order WKB or phase integral methods can be applied to the new governing
equation to obtain analytic approximations for the beam scattering quantities, since for
second order equations these methods are nowadays well developed. For an account on the
WKB method and phase integral methods see reference [13].
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APPENDIX A: GOVERNING EQUATION FOR QUANTITIES AI (S), BI (S), CI (S) AND DI (S),
AND ELEMENTS OF THE MATRIX M(S).

Here, we present the governing equations for the dependent variables AI (s), BI (s), CI (s) and
DI (s) derived in section 4.1. This set of equations follows.

dAI
ds

#

dBI
ds

#

dCI
ds

#

dD3
ds

!i k
1
(s)AI (s)#i k

1
(s)BI (s)"0, (A.1)
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These sets of equations can be written in matrix form, according to equation (15). The
elements of the matrix, denoted as M(s), of this system of equations are given in terms of
the non-dimensional #exural rigidity ei(s), non-dimensional tensile force PM (s) and in terms of
the wavenumbers k

1
(s) and k

2
(s), which are given, respectively, by equations (10) and (11). The

equations for the elements of matrix M(s) follows:
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The symbol M*
jk
(s) stands for the complex conjugate of the matrix element M

jk
(s).

APPENDIX B: ORDER OF MAGNITUDE OF THE ELEMENTS OF MATRIX M(s)

Here, we discuss in detail the order of magnitude of the elements of matrix M(s) in the
system of equations (15), which governs the evolution of the wave mode amplitudes along
the non-uniform beam. As mentioned in section 4.2, we consider two regimes. In the "rst
regime, we consider the limit hP0, where h is de"ned in section 4.2 as the ratio between the
restoring force due to the tensile load and the bending moment. In the second regime, we
consider the order of magnitude of the restoring force due to the tensile force to be of the
same or larger order of magnitude than the order of magnitude of the bending moment
(h*1). The order of magnitude of the terms that compose the elements of matrix M(s) are
given in terms of the non-dimensional quantities l, h, e, e@, d@ and j, which were de"ned in the
"rst part of section 4.2.

B.1. REGIME hP0

First, we need to estimate the order of magnitude of the wavenumbers k
1
(s) and k

2
(s) and

their derivatives, and in terms of the quantities l(s) and h(s), they are given by the equations
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Then, we discuss the order of magnitude of the elements of the matrix M(s). As noted in
section 4.2, we need only to discuss the order of magnitude of the basic elements of the
matrix M(s). The equations for these seven elements are given in Appendix A.

In this regime, according to equations (B.1) and (B.2), the order of magnitude of the
wavenumbers are given as

k
1
(s)&k

2
(s)&O (l1@4), k2

1
(s)#k2

2
(s)&O(l1@2). (B.5, 6)

To estimate the order of magnitude of the derivatives of the wavenumbers, we need the
order of magnitude of the derivative of the quantities l(s) and h(s). According to equations (18)
and (19), we have
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&
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O (leK)

!

l(s)
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ds
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!

h(s)

ei (s)
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O(he@K)

&O(max MdK, he@KN). (B.8)

According to equations (B.3), (B.4) and the estimates above, the estimates for the order of
magnitude of the derivatives of the wavenumbers are given by the equation

dk
1

ds
&

dk
2

ds
&O (max Ml1@4eK, l1@4e@K, l~1@4dKN). (B.9)

The analysis of the order of magnitude of the basic elements of matrix M(s) follows:
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M
21

(s)"
1

2k
1
(s)

dk
1

ds
hgigj

O(maxMeK, e@K,l~1@2dKN)

#

1

2ei(s)[k2
1
(s)#k2

2
(s)]

dP1
ds

hggggiggggj
O(l~1@2dK)

, (B.11)
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The order of magnitude of one element M
jk

(s) above is given by the order of magnitude of
the term with the largest order of magnitude among the components of the element in
question, which result in equations (29)}(35).

B.2. REGIME h*1

We proceed in the same way as in the section above. First, we estimate the order of
magnitude of the wavenumbers k

1
(s) and k

2
(s) and their derivatives. Then, we analyze the

order of magnitude of the basic elements of matrix M(s).
In this regime, according to equations (B.1) and (B.2), the order of magnitude of the

wavenumbers is given by

k
1
(s)&O(l1@4), k

2
(s)&O(h1@2), (B.17, 18)

and

k2
1
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2
(s)&O(h). (B.19)
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To estimate the order of magnitude of the derivatives of the wavenumbers, we need the
order of magnitude of the derivative of the quantities l(s) and h(s). The order of magnitude
of these quantities are exactly the same as obtained in the previous section, and are given by
equations (B.7) and (B.8).

According to equations (B.3), (B.4) and the estimates for the derivative of the quantities
l(s) and h(s), the estimates for the order of magnitude of the derivatives of the wavenumbers
are given by the equations
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The analysis of the order of magnitude of the seven elements M
11

(s), M
21

(s), M
31

(s),
M

13
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(s) and M
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(s) follows:
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The order of magnitude of the elements M
jk

(s) above is given by the order of magnitude of
the component with the largest order of magnitude among the components of the element in
question, which result in equations (37)}(43).

APPENDIX C: DECOUPLING OF THE PROPAGATING AND EVANESCENT PART
OF THE WAVEFIELD

Here, we show that under the restriction of the tensile force and the product of the mass
per unit length by the #exural rigidity being constants, the matrix elements M

jk
(s) and

M
kj

(s) ( j"1, 2 and k"3, 4) are zero.
Under the restrictions mentioned above, the wavenumbers k

1
(s) and k

2
(s) are given by the

equations
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The derivatives of the wavenumbers can be obtained from equations (C.1) and (C.2).
C is the value of m(s)ei (s) when this product is restricted to a constant value. In other

words,

m(s) ei (s)"C. (C.3)

Based on the expressions above for the wavenumbers k
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(s) and k
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(s), we realize that
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Equations (C.4) and (C.5) plus the restriction of constant non-dimensional tensile force
imply that the elements M

jk
(s) and M

kj
(s)( j"1, 2 and k"3, 4) are zero, as we can see

through their expressions in Appendix A.
In this case, the second order governing equation (50) assumes the Helmholtz-like form

(65).

APPENDIX D: SECOND ORDER EQUATION WITH ANALYTIC SOLUTION

The second order governing equation assumes the form given by equation (65). The index
of refraction nJ (s) is given by

nJ (s)"GS!N
exp (k

g
j (s#s

0
))

1#exp (k
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j (s#s

0
))
!4M

exp (k
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0
))

(1#exp (k
g
j(s#s

0
)))2H

1@2
. (D.1)

The solution of the second order governing equation (65) for this index of refraction is
given in terms of hyper-geometric functions in the form

s(s)"
1

Jk
g
j exp(k

g
j (s!s

0
))

(1#exp (k
g
j(s!s

0
)))d`b~c`12(DF

5
#B F

6
), (D.2)

with F
5

and F
6

as the hyper-geometric functions:

F
5
"z~dF(d, d!c#1, d!b#1; 1/z), (D.3)

F
6
"z~bF(b, b!c#1, b!d#1; 1/z). (D.4)

The constants d, b and c are given in terms of the constants XM (u, P1 , 1), k
g
j, S, N and

M according to equations (81), (82) and (83).
The hyper-geometric functions F

5
(s) and F

6
(s) (see Brekhovskikh [11], pages 54 and 55)

were used in solution (D.2) due to the chosen radiation conditions of left wave incidence and
due to the sign of the parameter k

g
, which is positive according to the caption of Figure 5.

The re#ection and transmission coe$cients are given in terms of Gamma functions,
according to equations (79) and (80).

APPENDIX E: REFLECTION AND TRANSMISSION COEFFICIENTS FOR
THE BERNOULLI}EULER BEAM

We consider an Euler}Bernoulli beam of three pieces. At each piece, the material and
geometrical properties are constants. There is a "nite piece bounded by two semi-in"nite
pieces with the same material and geometrical properties. The material and geometrical
properties for the "nite piece di!er from those of the two semi-in"nite pieces. The
governing equation for wave propagation along the beam is given by equation (6). The
non-dimensional functions representing the mass per unit length and the #exural rigidity
are, respectively, the functions m(s) and ei(s), given in this case by

m(s)"G
1

m
1

for s(0 and s' 1̧ ,
for 0(s( 1̧ ,

(E.1)

ei(s)"G
1

ei
1

for s(0 and s' 1̧ ,
for 0(s( 1̧ .

(E.2)
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The general solution for the governing equation (6) is given by
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1
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(E.3)

The wave numbers k
1

and k
3

are given by equation (10), and the wave numbers k
2

and
k
4
are given by equation (11). ei(s) and m(s) in equations (10) and (11) are substituted by their

values given, respectively, by equations (E.1) and (E.2). At the discontinuity of the
coe$cients of the governing equation (6), we have the matching conditions

y(g`)"y(g~), y
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(g~), (E.4, 5)
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sss
(g~), (E.7)

where g"0 and g" 1̧ . If we substitute the general solution given by equation (E.3) in the
matching conditions (E.4)} (E.7) for g"0 and 1̧ , we obtain the following set of systems of
equations for the wave modes amplitudes along the beam:
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The matrices M(k
a
, k

b
, ei) and R(k

a
, k

b
, s) are given by the equations
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[R(k
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exp (ik
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s) 0 0 0

0 exp (!ik
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s) 0 0

0 0 exp (k
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. (E.11)
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Next, let us consider the radiation condition of left incidence, which is given by
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D~ H . (E.12)

If we impose the radiation conditions (E.12) to the system of equations (E.8) and (E.9), we
obtain the re#ection coe$cient R~ and the transmission coe$cient ¹~ by solving
numerically the resulting system of equations, which follows:
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